Abstract

Compartment-based (lattice-based) reaction–diffusion algorithms are often used for studying complex stochastic spatio-temporal processes inside cells. In this paper the influence of macromolecular crowding on stochastic reaction–diffusion simulations is investigated. Reaction–diffusion processes are considered on two different kinds of compartmental lattice, a cubic lattice and a hexagonal close packed lattice, and solved using two different algorithms, the stochastic simulation algorithm and the spatiocyte algorithm (Arjunan and Tomita 2010 Syst. Synth. Biol. 4, 35–53). Obstacles (modelling macromolecular crowding) are shown to have substantial effects on the mean squared displacement and average number of molecules in the domain but the nature of these effects is dependent on the choice of lattice, with the cubic lattice being more susceptible to the effects of the obstacles. Finally, improvements for both algorithms are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call