Abstract

In this paper we investigate a situation where relativistic particles are reaccelerated diffusing across regions of reconnection and magnetic dynamo in super-Alfvenic, incompressible large-scale turbulence. We present an exploratory study of this mechanism in the intra-cluster-medium (ICM). In view of large-scale turbulence in the ICM we adopt a reconnection scheme that is based on turbulent reconnection and MHD turbulence. In this case particles are accelerated and decelerated in a systematic way in reconnecting and magnetic-dynamo regions, respectively, and on longer time-scales undergo a stochastic process diffusing across these sites (similar to second-order Fermi). Our study extends on larger scales numerical studies that focused on the acceleration in and around turbulent reconnecting regions. We suggest that this mechanism may play a role in the reacceleration of relativistic electrons in galaxy clusters providing a new physical scenario to explain the origin of cluster-scale diffuse radio emission. Indeed differently from current turbulent reacceleration models proposed for example for radio halos this mechanism is based on the effect of large-scale incompressible and super-Alfvenic turbulence. In this new model turbulence governs the interaction between relativistic particles and magnetic field lines that diffuse, reconnect and are stretched in the turbulent ICM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call