Abstract
Supernova remnants (SNRs) are discussed as the most promising sources of galactic cosmic rays (CR). The diffusive shock acceleration (DSA) theory predicts particle spectra in a rough agreement with observations. Upon closer inspection, however, the photon spectra of observed SNRs indicate that the particle spectra produced at SNRs shocks deviate from the standard expectation. This work suggests a viable explanation for a softening of the particle spectra in SNRs. The basic idea is the re-acceleration of particles in the turbulent region immediately downstream of the shock. This thesis shows that at the re-acceleration of particles by the fast-mode waves in the downstream region can be efficient enough to impact particle spectra over several decades in energy. To demonstrate this, a generic SNR model is presented, where the evolution of particles is described by the reduced transport equation for CR. It is shown that the resulting particle and the corresponding synchrotron spectra are significantly softer compared to the standard case. Next, this work outlines RATPaC, a code developed to model particle acceleration and corresponding photon emissions in SNRs. RATPaC solves the particle transport equation in test-particle mode using hydrodynamic simulations of the SNR plasma flow. The background magnetic field can be either computed from the induction equation or follows analytic profiles. This work presents an extended version of RATPaC that accounts for stochastic re-acceleration by fast-mode waves that provide diffusion of particles in momentum space. This version is then applied to model the young historical SNR Tycho. According to radio observations, Tycho’s SNR features the radio spectral index of approximately −0.65. In previous modeling approaches, this fact has been attributed to the strongly distinctive Alfvenic drift, which is assumed to operate in the shock vicinity. In this work, the problems and inconsistencies of this scenario are discussed. Instead, stochastic re-acceleration of electrons in the immediate downstream region of Tycho’s SNR is suggested as a cause for the soft radio spectrum. Furthermore, this work investigates two different scenarios for magnetic-field distributions inside Tycho’s SNR. It is concluded that magnetic-field damping is needed to account for the observed filaments in the radio range. Two models are presented for Tycho’s SNR, both of them feature strong hadronic contribution. Thus, a purely leptonic model is considered as very unlikely. Additionally, to the detailed modeling of Tycho’s SNR, this dissertation presents a relatively simple one-zone model for the young SNR Cassiopeia A and an interpretation for the recently analyzed VERITAS and Fermi-LAT data. It shows that the γ-ray emission of Cassiopeia A cannot be explained without a hadronic contribution and that the remnant accelerates protons up to TeV energies. Thus, Cassiopeia A is found to be unlikely a PeVatron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.