Abstract

<p style='text-indent:20px;'>The feasibility problem is at the core of the modeling of many problems in various disciplines of mathematics and physical sciences, and the quasi-convex function is widely applied in many fields such as economics, finance, and management science. In this paper, we consider the stochastic quasi-convex feasibility problem (SQFP), which is to find a common point of infinitely many sublevel sets of quasi-convex functions. Inspired by the idea of a stochastic index scheme, we propose a stochastic quasi-subgradient method to solve the SQFP, in which the quasi-subgradients of a random (and finite) index set of component quasi-convex functions at the current iterate are used to construct the descent direction at each iteration. Moreover, we introduce a notion of Hölder-type error bound property relative to the random control sequence for the SQFP, and use it to establish the global convergence theorem and convergence rate theory of the stochastic quasi-subgradient method. It is revealed in this paper that the stochastic quasi-subgradient method enjoys both advantages of low computational cost requirement and fast convergence feature.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.