Abstract

Combettes and Pesquet (SIAM J Optim 25:1221–1248, 2015) investigated the almost sure weak convergence of block-coordinate fixed point algorithms and discussed their applications to nonlinear analysis and optimization. This algorithmic framework features random sweeping rules to select arbitrarily the blocks of variables that are activated over the course of the iterations and it allows for stochastic errors in the evaluation of the operators. The present paper establishes results on the mean-square and linear convergence of the iterates. Applications to monotone operator splitting and proximal optimization algorithms are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.