Abstract

We embed Nelson’s theory of stochastic quantization in the Schwartz-Meyer second order geometry framework. The result is a non-perturbative theory of quantum mechanics on (pseudo-)Riemannian manifolds. Within this approach, we derive stochastic differential equations for massive spin-0 test particles charged under scalar potentials, vector potentials and gravity. Furthermore, we derive the associated Schrödinger equation. The resulting equations show that massive scalar particles must be conformally coupled to gravity in a theory of quantum gravity. We conclude with a discussion of some prospects of the stochastic framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.