Abstract
Random noise can generate a unidirectional heat current across asymmetric nano-objects in the absence (or against) a temperature gradient. We present a minimal model for a molecular-level stochastic heat pump that may operate arbitrarily close to the Carnot efficiency. The model consists a fluctuating molecular unit coupled to two solids characterized by distinct phonon spectral properties. Heat pumping persists for a broad range of system and bath parameters. Furthermore, by filtering the reservoirs' phonons the pump efficiency can approach the Carnot limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.