Abstract

In this paper, we provide some results on the class of spatial autoregressive conditional heteroscedasticity (ARCH) models, which have been introduced in recent literature to model spatial conditional heteroscedasticity. That means that the variance in some locations depends on the variance in neighboring locations. In contrast to the temporal ARCH model, for which the distribution is known, given the full information set for the prior periods, the distribution is not straightforward in the spatial and spatiotemporal settings. Thus, we focus on the probability structure of these models. In particular, we derive the conditional and unconditional moments of the process as well as the distribution of the process, given a known error distribution. Eventually, it is shown that the process is strictly stationary under certain conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.