Abstract
This study addresses primal–dual dynamics for a stochastic programming problem for capacity network design. It is proven that consensus can be achieved on the here and now variables which represent the capacity of the network. The main contribution is a heuristic approach which involves the formulation of the problem as a mean-field game. Every agent in the mean-field game has control over its own primal–dual dynamics and seeks consensus with neighboring agents according to a communication topology. We obtain theoretical results concerning the existence of a mean-field equilibrium. Moreover, we prove that the consensus dynamics converge such that the agents agree on the capacity of the network. Lastly, we emphasize the ways in which penalties on control and state influence the dynamics of agents in the mean-field game.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.