Abstract

In a previous letter (Alcaraz F C et al 2014 J. Phys. A: Math. Theor. 47 212003) we have presented numerical evidence that a Hamiltonian expressed in terms of the generators of the periodic Temperley–Lieb algebra has, in the finite-size scaling limit, a spectrum given by representations of the Virasoro algebra with complex highest weights. This Hamiltonian defines a stochastic process with a ZN symmetry. We give here analytical expressions for the partition functions for this system which confirm the numerics. For N even, the Hamiltonian has a symmetry which makes the spectrum doubly degenerate leading to two independent stochastic processes. The existence of a complex spectrum leads to an oscillating approach to the stationary state. This phenomenon is illustrated by an example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.