Abstract

BackgroundThe deep mechanisms (deterministic and/or stochastic processes) underlying community assembly are a central challenge in microbial ecology. However, the relative importance of these processes in shaping riverine microeukaryotic biogeography is still poorly understood. Here, we compared the spatiotemporal and biogeographical patterns of microeukaryotic community using high-throughput sequencing of 18S rRNA gene and multivariate statistical analyses from a subtropical river during wet and dry seasons.ResultsOur results provide the first description of biogeographical patterns of microeukaryotic communities in the Tingjiang River, the largest river in the west of Fujian province, southeastern China. The results showed that microeukaryotes from both wet and dry seasons exhibited contrasting community compositions, which might be owing to planktonic microeukaryotes having seasonal succession patterns. Further, all components of the microeukaryotic communities (including total, dominant, always rare, and conditionally rare taxa) exhibited a significant distance-decay pattern in both seasons, and these communities had a stronger distance-decay relationship during the dry season, especially for the conditionally rare taxa. Although several variables had a significant influence on the microeukaryotic communities, the environmental and spatial factors showed minor roles in shaping the communities. Importantly, these microeukaryotic communities were strongly driven by stochastic processes, with 89.9%, 88.5%, and 89.6% of the community variation explained by neutral community model during wet, dry, and both seasons, respectively. The neutral community model also explained a large fraction of the community variation across different taxonomic groups and levels. Additionally, the microeukaryotic taxa, which were above and below the neutral prediction, were ecologically and taxonomically distinct groups, which might be interactively structured by deterministic and stochastic processes.ConclusionsThis study demonstrated that stochastic processes are sufficient in shaping substantial variation in river microeukaryotic metacommunity across different hydrographic regimes, thereby providing a better understanding of spatiotemporal patterns, processes, and mechanisms of microeukaryotic community in waters.

Highlights

  • The deep mechanisms underlying community assembly are a central challenge in microbial ecology

  • This study aimed to answer the following key questions: (1) Do microeukaryotic communities in wet and dry seasons exhibit similar or different spatiotemporal patterns? (2) Are the total, dominant, always rare, and conditionally rare microeukaryotic taxa assembled via different community assembly mechanisms? (3) How well do neutral processes explain the microeukaryotic assembly across different seasons in the subtropical river? (4) To what extent do species’ migration rate and environmental factors affect neutral and non-neutral community compositions?

  • This study provides a better understanding of spatiotemporal patterns, processes, and mechanisms underlying the microeukaryotic community and reveals the importance of the stochastic processes on the microeukaryotic metacommunity assembly in a subtropical river across different hydrographic regimes

Read more

Summary

Introduction

The deep mechanisms (deterministic and/or stochastic processes) underlying community assembly are a central challenge in microbial ecology. The relative importance of these processes in shaping riverine microeukaryotic biogeography is still poorly understood. The mechanisms shaping the microbial community diversity, and its distribution, functions, succession and biogeography, is a central, but poorly understood, topic in aquatic microbial ecology, especially in lotic ecosystems [1,2,3,4,5]. Niche-based and neutral-based theories constitute two important and complementary mechanisms for understanding microbial community assembly [6,7,8]. Stochastic processes are considered to play important roles in shaping microbial community structure [6,7,8, 15], the importance of ecological stochasticity in influencing community structure is far less appreciated. The neutral community model (NCM), proposed by Sloan et al [7], is useful in quantifying the importance of neutral processes [7, 13]

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call