Abstract

We propose an open quantum systems approach to the physics of heavy quarkonia in a thermal medium, based on stochastic quantum evolution. This description emphasizes the importance of collisions with the environment and focuses on the concept of spatial decoherence of the heavy quarkonium wave function. It is shown how to determine the parameters of the dynamical evolution, i.e. the real potential and the noise strength, from a comparison with quantities to be obtained from lattice QCD. Furthermore the imaginary part of the lattice QCD heavy quark potential is found to be naturally related to the strength of the noise correlations. We discuss the time evolution of $Q\bar{Q}$ analytically in a limiting scenario for the spatial decoherence and provide a qualitative 1-dimensional numerical simulation of the real-time dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.