Abstract
A portfolio optimization problem on an infinite time horizon is considered. Risky asset price obeys a logarithmic Brownian motion, and the interest rate varies according to an ergodic Markov diffusion process. Moreover, the interest rate fluctuation is correlated with the risky asset price fluctuation. The goal is to choose optimal investment and consumption policies to maximize the infinite horizon expected discounted log utility of consumption. A dynamic programming principle is used to derive the dynamic programming equation (DPE). The explicit solutions for optimal consumption and investment control policies are obtained. In addition, for a special case, an explicit formula for the value function is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Theoretical and Applied Finance
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.