Abstract

Stochasticity is an inherent feature of biological neural activities. We propose a noise-injection scheme to implement a GHz-rate stochastic photonic spiking neuron (S-PSN). The firing-probability encoding is experimentally demonstrated and exploited for Bayesian inference with unsupervised learning. In a breast diagnosis task, the stochastic photonic spiking neural network (S-PSNN) can not only achieve a classification accuracy of 96.6%, but can also evaluate the diagnosis uncertainty with prediction entropies. As a result, the misdiagnosis rate is reduced by 80% compared to that of a conventional deterministic photonic spiking neural network (D-PSNN) for the same task. The GHz-rate S-PSN endows the neuromorphic photonics with high-speed Bayesian inference for reliable information processing in error-critical scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call