Abstract
As is well known, a complete stochastic solution of the stochastic differential equation governing saturated groundwater flow leads to an infinite hierarchy of equations in terms of higher-order moments. Perturbation techniques are commonly used to close this hierarchy, using power-series expansions. These methods are applied by truncating the series after a finite number of terms, and products of random gradients of conductivity and head potential are neglected. Uncertainty regarding the number or terms required to yield a sufficiently accurate result is a significant drawback with the application of power series-based perturbation methods for such problems. Low-order series truncation may be incapable of representing fundamental characteristics of flow and can lead to physically unreasonable and inaccurate solutions of the stochastic flow equation. To support this argument, one-dimensional, steady-state, saturated groundwater flow is examined, for the case of a spatially distributed hydraulic conductivity field. An ordinary power-series perturbation method is used to approximate the mean head, using second-order statistics to characterize the conductivity field. Then an interactive perturbation approach is introduced, which yields improved results compared to low-order, power-series perturbation methods for situations where strong interactions exist between terms in such approximations. The interactive perturbation concept is further developed using Feynman-type diagrams and graph theory, which reduce the original stochastic flow problem to a closed set of equations for the mean and the covariance functions. Both theoretical and practical advantages of diagrammatic solutions are discussed; these include the study of bounded domains and large fluctuations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.