Abstract

We adapt the stochastic Perron’s method to the case of double obstacle problems associated to Dynkin games. We construct, symmetrically, a viscosity sub-solution which dominates the upper value of the game and a viscosity super-solution lying below the lower value of the game. If the double obstacle problem satisfies the viscosity comparison property, then the game has a value which is equal to the unique and continuous viscosity solution. In addition, the optimal strategies of the two players are equal to the first hitting times of the two stopping regions, as expected. The (single) obstacle problem associated to optimal stopping can be viewed as a very particular case. This is the first instance of a non-linear problem where the stochastic Perron’s method can be applied successfully.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.