Abstract
The smooth and discontinuous oscillator with fractional derivative damping under combined harmonic and random excitations is investigated in this paper. The short memory principle is introduced so that the evolution process of the oscillator with fractional derivative damping can be described by the Markov chain. Then the stochastic generalized cell mapping method is used to obtain the steady-state probability density functions of the response. The stochastic response and bifurcation of the oscillator with fractional derivative damping are discussed in detail. We found that both the smoothness parameter, the noise intensity, the amplitude and frequency of the harmonic force can induce the occurrence of stochastic P-bifurcation in the system. Monte Carlo simulation verifies the effectiveness of the method we adopt in the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.