Abstract
This paper presents a stochastic partially optimized cyclic shift crossover operator for the optimization of the multi-objective vehicle routing problem with time windows using genetic algorithms. The aim of the paper is to show how the combination of simple stochastic rules and sequential appendage policies addresses a common limitation of the traditional genetic algorithm when optimizing complex combinatorial problems. The limitation, in question, is the inability of the traditional genetic algorithm to perform local optimization. A series of tests based on the Solomon benchmark instances show the level of competitiveness of the newly introduced crossover operator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Soft Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.