Abstract
In this paper, we first prove existence and uniqueness of the solution of a backward doubly stochastic differential equation (BDSDE) and of the related stochastic partial differential equation (SPDE) under monotonicity assumption on the generator. Then we study the case where the terminal data is singular, in the sense that it can be equal to +∞ on a set with positive measure. In this setting we show that there exists a minimal solution, both for the BDSDE and for the SPDE. Note that solution of the SPDE means weak solution in the Sobolev sense.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.