Abstract

AbstractWe provide necessary and sufficient conditions for stochastic invariance of finite dimensional submanifolds for solutions of stochastic partial differential equations (SPDEs) in continuously embedded Hilbert spaces with non-smooth coefficients. Furthermore, we establish a link between invariance of submanifolds for such SPDEs in Hermite Sobolev spaces and invariance of submanifolds for finite dimensional SDEs. This provides a new method for analyzing stochastic invariance of submanifolds for finite dimensional Itô diffusions, which we will use in order to derive new invariance results for finite dimensional SDEs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.