Abstract

The frog model starts with one active particle at the root of a graph and some number of dormant particles at all nonroot vertices. Active particles follow independent random paths, waking all inactive particles they encounter. We prove that certain frog model statistics are monotone in the initial configuration for two nonstandard stochastic dominance relations: the increasing concave and the probability generating function orders. This extends many canonical theorems. We connect recurrence for random initial configurations to recurrence for deterministic configurations. Also, the limiting shape of activated sites on the integer lattice respects both of these orders. Other implications include monotonicity results on transience of the frog model where the number of frogs per vertex decays away from the origin, on survival of the frog model with death, and on the time to visit a given vertex in any frog model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.