Abstract
Consider a model-based decision support system (DSS) where all the variables involved are binary, each taking on 0 or 1. The system categorizes the probability that a certain variable is equal to 1 conditional on a set of variables in an ascending order of the probability values and predicts for the variable in terms of category levels. Under the condition that all the variables are positively associated with each other, it is shown in this paper that the category levels are robust to the probability values. This robustness is illustrated by a simulated experiment using a variety of model structures where a set of probability values is proposed for a robust classification. A robust classification method is proposed as an alternative when exact or satisfactory probability values are not available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.