Abstract
Nonlinear dependence on a probability measure has recently been encountered with increasing intensity in stochastic optimization. This type of dependence corresponds to many situations in applications; it can appear in problems static (one-stage), dynamic with finite (multi-stage) or infinite horizon, and single- and multi-objective ones. Moreover, the nonlinear dependence can appear not only in the objective functions but also in the constraint sets. In this paper, we will consider static one-objective problems in which the nonlinear dependence appears in the objective function and may also appear in the constraint sets. In detail, we consider “deterministic” constraint sets, whose dependence on the probability measure is nonlinear, constraint sets determined by second-order stochastic dominance, and sets given by mean-risk problems. The last mentioned instance means that the constraint set corresponds to solutions which guarantee acceptable values of both criteria. To obtain relevant assertions, we employ the stability results given by the Wasserstein metric, based on the L1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {{\\mathcal {L}}}_{1} $$\\end{document} norm. We mainly focus on the case in which a solution has to be obtained on the basis of the data and of investigating a relationship between the original problem and its empirical version.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.