Abstract

The main challenge of tracking articulated structures like hands is their many degrees of freedom (DOFs). A realistic 3-D model of the human hand has at least 26 DOFs. The arsenal of tracking approaches that can track such structures fast and reliably is still very small. This paper proposes a tracker based on stochastic meta-descent (SMD) for optimisations in such high-dimensional state spaces. This new algorithm is based on a gradient descent approach with adaptive and parameter-specific step sizes. The SMD tracker facilitates the integration of constraints, and combined with a stochastic sampling technique, can get out of spurious local minima. Furthermore, the integration of a deformable hand model based on linear blend skinning and anthropometrical measurements reinforces the robustness of the tracker. Experiments show the efficiency of the SMD algorithm in comparison with common optimisation methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.