Abstract
Understanding the underpinnings of biological motor control is an important issue in movement neuroscience. Optimal control theory is a leading framework to rationalize this problem in computational terms. Previously, optimal control models have been devised either in deterministic or in stochastic settings to account for different aspects of motor control (e.g. average behavior versus trial-to-trial variability). While these approaches have yielded valuable insights about motor control, they typically fail in explaining muscle co-contraction. Co-contraction of a group of muscles associated to a motor function (e.g. agonist and antagonist muscles spanning a joint) contributes to modulate the mechanical impedance of the neuromusculoskeletal system (e.g. joint viscoelasticity) and is thought to be mainly under the influence of descending signals from the brain. Here we present a theory suggesting that one primary goal of motor planning may be to issue feedforward (open-loop) motor commands that optimally specify both force and impedance, according to noisy neuromusculoskeletal dynamics and to optimality criteria based on effort and variance. We show that the proposed framework naturally accounts for several previous experimental findings regarding the regulation of force and impedance via muscle co-contraction in the upper-limb. Stochastic optimal (closed-loop) control, preprogramming feedback gains but requiring on-line state estimation processes through long-latency sensory feedback loops, may then complement this nominal feedforward motor command to fully determine the limb’s mechanical impedance. The proposed stochastic optimal open-loop control theory may provide new insights about the general articulation of feedforward/feedback control mechanisms and justify the occurrence of muscle co-contraction in the neural control of movement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.