Abstract
This paper investigates global uncertainty propagation and stochastic motion planning for the attitude kinematics of a rigid body. The Fokker–Planck equation on the special orthogonal group is numerically solved via noncommutative harmonic analysis to propagate a probability density function along flows of the attitude kinematics. Based on this, a stochastic optimal control problem is formulated to rotate a rigid body while avoiding obstacles within uncertain environments in an optimal fashion. The proposed intrinsic, geometric formulation does not require the common assumption that uncertainties are Gaussian or localized. It can be also applied to complex rotational maneuvers of a rigid body without singularities in a unified way. The desirable properties are illustrated by numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.