Abstract

This paper studies a one-sector stochastic optimal growth model with i.i.d. productivity shocks in which utility is allowed to be bounded or unbounded, the shocks are allowed to be bounded or unbounded, and the production function is not required to satisfy the Inada conditions at zero and infinity. Our main results are three-fold. First, we confirm the Euler equation as well as the existence of a continuous optimal policy function under a minimal set of assumptions. Second, we establish the existence of an invariant distribution under quite general assumptions. Third, we show that the density of optimal output converges to a unique invariant density independently of initial output under the assumption that the shock distribution has a density whose support is an interval, bounded or unbounded. In addition, we provide existence and stability results for general one-dimensional Markov processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.