Abstract

This paper proposes a stochastic dynamic programming framework for the optimal energy management of a smart home with plug-in electric vehicle (PEV) energy storage. This paper is motivated by the challenges associated with intermittent renewable energy supplies and the local energy storage opportunity presented by vehicle electrification. This paper seeks to minimize electricity ratepayer cost, while satisfying home power demand and PEV charging requirements. First, various operating modes are defined, including vehicle-to-grid, vehicle-to-home, and grid-to-vehicle. Second, we use equivalent circuit PEV battery models and probabilistic models of trip time and trip length to formulate the PEV to smart home energy management stochastic optimization problem. Finally, based on time-varying electricity price and time-varying home power demand, we examine the performance of the three operating modes for typical weekdays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call