Abstract

A new semi-active control device, magneto-rheological tuned liquid column damper (MR-TLCD), has been devised recently by the authors for mitigation of wind-induced vibration response of tall building structures. The developed device combines the benefits of magneto-rheological smart materials and tuned liquid column dampers. In this paper, real-time semi-active vibration control of tall building structures incorporating nonlinear MR-TLCDs under random wind excitation is studied by means of the statistical linearization method and the optimal linear quadratic (LQ) control strategy. The equations of motion of a tall building structure subjected to random wind loading and controlled by using MR-TLCDs at the top floor are first derived and represented in modal coordinate. After linearizing the uncontrollable part of MR-TLCD damping force and incorporating it with structural components, the classical linear quadratic (LQ) control strategy is applied to the linearized structural system to determine optimal control force of the MR-TLCDs. Clipping treatment is performed to ensure the commanded control force implementable by the MR-TLCDs. Wind-excited response of the semi-actively controlled structural system is evaluated by using the frequency-response function and then compared with that of the passively controlled structure to determine the control efficacy. A case study of a 50-story building structure is conducted to illustrate excellent control efficacy of the proposed semi-active MR-TLCD control system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call