Abstract

A stochastic procedure is developed which allows one to express Pontryagin's maximum principle for dissipative quantum system solely in terms of stochastic wave functions. Time-optimal controls can be efficiently computed without computing the density matrix. Specifically, the proper dynamical update rules are presented for the stochastic costate variables introduced by Pontryagin's maximum principle and restrictions on the form of the terminal cost function are discussed. The proposed procedure is confirmed by comparing the results to those obtained from optimal control on Lindbladian dynamics. Numerically, the proposed formalism becomes time and memory efficient for large systems, and it can be generalized to describe non-Markovian dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.