Abstract

Quantum optics does not give a local explanation of the coincidence counts in spatially separated photodetectors. This is the case for a wide variety of phenomena, including the anticorrelated counting rates in the two channels of a beam splitter, the coincident counting rates of the two “photons” in an atomic cascade, and the “antibunching” observed in resonance fluorescence. We propose a local realist theory that explains all of these data in a consistent manner. The theory uses a completely classical description of the electromagnetic field, but with boundary conditions of the far field that are equivalent to assuming a real fluctuating, zero-point field. It is related to stochastic electrodynamics similarly to the way classical optics is related to classical electromagnetic theory. The quantitative aspects of the theory are developed sufficiently to show that there is agreement with all experiments performed till now.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.