Abstract

The relatively low spatial resolution of the optical microscope presents significant limitations for the observation of biological ultrastructure. Subcellular structures and molecular complexes essential for biological function exist on length scales from nanometers to micrometers. When observed with light, however, structural features smaller than ∼0.2 µm are blurred and are difficult or impossible to resolve. In this article, we describe stochastic optical reconstruction microscopy (STORM), a method for superresolution imaging based on the high accuracy localization of individual fluorophores. It uses optically switchable fluorophores: molecules that can be switched between a nonfluorescent and a fluorescent state by exposure to light. The article discusses photoswitchable fluorescent molecules, STORM microscope design and the imaging procedure, data analysis, imaging of cultured cells, multicolor STORM, and three-dimensional (3D) STORM. This approach is generally applicable to biological imaging and requires relatively simple experimental apparatus; its spatial resolution is theoretically unlimited, and a resolution improvement of an order of magnitude over conventional optical microscopy has been experimentally demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.