Abstract

In this paper linear stochastic transport and continuity equations with drift in critical $L^{p}$ spaces are considered. In this situation noise prevents shocks for the transport equation and singularities in the density for the continuity equation, starting from smooth initial conditions. Specifically, we first prove a result of Sobolev regularity of solutions, which is false for the corresponding deterministic equation. The technique needed to reach the critical case is new and based on parabolic equations satisfied by moments of first derivatives of the solution, opposite to previous works based on stochastic flows. The approach extends to higher order derivatives under more regularity of the drift term. By a duality approach, these regularity results are then applied to prove uniqueness of weak solutions to linear stochastic continuity and transport equations and certain well-posedness results for the associated stochastic differential equation (sDE) (roughly speaking, existence and uniqueness of flows and their $C^\alpha$ regularity, strong uniqueness for the sDE when the initial datum has diffuse law). Finally, we show two types of examples: on the one hand, we present well-posed sDEs, when the corresponding ODEs are ill-posed, and on the other hand, we give a counterexample in the supercritical case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.