Abstract
Calculating an equilibrium point in general equilibrium models in many cases reduces to solving a nonlinear system of equations. Taking model parameter values as random variables with a known distribution increases the level of information provided by the model but makes computation of equilibrium points even more challenging. We propose a computationally efficient procedure based on application of the fixed Newton method for a sequence of equilibrium problems generated by simulation of parameters values. The convergence conditions of the method are derived. The numerical results presented are obtained using the neoclassic exchange model and the spatial price equilibrium model. The results show a clear difference in the quality of information obtained by solving a sequence of problems if compared with the single equilibrium problem. At the same time the proposed numerical procedure is affordable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.