Abstract

Using limited assets, an interdictor attempts to destroy parts of a capacitated network through which an adversary will subsequently maximize flow. We formulate and solve a stochastic version of the interdictor's problem: Minimize the expected maximum flow through the network when interdiction successes are binary random variables. Extensions are made to handle uncertain arc capacities and other realistic variations. These two-stage stochastic integer programs have applications to interdicting illegal drugs and to reducing the effectiveness of a military force moving materiel, troops, information, etc., through a network in wartime. Two equivalent model formulations allow Jensen's inequality to be used to compute both lower and upper bounds on the objective, and these bounds are improved within a sequential approximation algorithm. Successful computational results are reported on networks with over 100 nodes, 80 interdictable arcs, and 180 total arcs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.