Abstract
Although fluctuations in the waiting time series have been studied for a long time, some important issues such as its long-range memory and its stochastic features in the presence of nonstationarity have so far remained unstudied. Here we find that the "waiting times" series for a given increment level have long-range correlations with Hurst exponents belonging to the interval 1/2<H<1. We also study positive-negative level asymmetry of the waiting time distribution. We find that the logarithmic difference of waiting times series has a short-range correlation, and then we study its stochastic nature using the Markovian method and determine the corresponding Kramers-Moyal coefficients. As an example, we analyze the velocity fluctuations in high Reynolds number turbulence and determine the level dependence of Markov time scales, as well as the drift and diffusion coefficients. We show that the waiting time distributions exhibit power law tails, and we were able to model the distribution with a continuous time random walk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.