Abstract

In this work, stochastic homogenization analysis of heterogeneous materials is addressed in the context of elasticity under finite deformations. The randomness of the morphology and of the material properties of the constituents as well as the correlation among these random properties are fully accounted for, and random effective quantities such as tangent tensor, first Piola---Kirchhoff stress, and strain energy along with their numerical characteristics are tackled under different boundary conditions by a multiscale finite element strategy combined with the Montecarlo method. The size of the representative volume element (RVE) with randomly distributed particles for different particle volume fractions is first identified by a numerical convergence scheme. Then, different types of displacement-controlled boundary conditions are applied to the RVE while fully considering the uncertainty in the microstructure. The influence of different random cases including correlation on the random effective quantities is finally analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call