Abstract
We study a stochastic multiplicative system composed of finite asynchronous elements to describe the wealth evolution in financial markets. We find that the wealth fluctuations or returns of this system can be described by a walk with correlated step sizes obeying truncated Lévy-like distribution, and the cross-correlation between relative updated wealths is the origin of the nontrivial properties of returns, including the power-law distribution with exponent outside the stable Lévy regime and the long-range persistence of volatility correlations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.