Abstract

AbstractDeployment of Energy Hubs (EHs) across the power grid can alleviate the Transmission System (TS) capacity and substitute the conventional fossil fuel‐based thermal units. Therefore, this paper presents a tri‐level multi‐stage Joint Expansion Planning of the Transmission system and EHs (JEPT&EHs). In this approach, the Cholesky decomposition technique combined with the Nataf transformation is applied to make the uncertain input parameters correlated. Then, the k‐means data‐clustering method is employed to reduce the initial correlated samples. In the first level, the Transmission System Operator (TSO) optimizes the planning and scheduling strategies associated with the TS capacity requirements and operation costs of the conventional generators. In the second level, the financers specify the expansion of the EHs based on the Locational Marginal Prices (LMPs). In the third level, the Direct Current Optimal Power Flow (DCOPF) is determined to update the LMPs by the Independent System Operator (ISO). The optimization problem is an Equilibrium Problem with Equilibrium Constraints (EPEC) since there are multiple financers across the TS. The proposed model is implemented on the IEEE standard 30 bus TS to present the effectiveness of the EHs' deployment and the impact of the correlations in the total costs of the TSO and financers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.