Abstract

This paper presents a convex, multi-period, AC-feasible Optimal Power Flow (OPF) framework that robustly dispatches flexible demand-side resources in unbalanced distribution feeders against uncertainty in very-short timescale solar Photo-Voltaic (PV) forecasts. This is valuable for power systems with significant behind-the-meter solar PV generation as their operation is affected by uncertainty from forecasts of demand and solar PV generation. The aim of this work is then to ensure the feasibility and reliability of distribution system operation under high solar PV penetration. We develop and present a novel, robust OPF formulation that accounts for both the nonlinear power flow constraints and the uncertainty in forecasts. This is achieved by linearizing an optimal trajectory and using first-order methods to systematically tighten voltage bounds. Case studies on a realistic distribution feeder shows the effectiveness of a receding-horizon implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call