Abstract

This paper considers linear discrete-time systems with additive disturbances, and designs a Model Predictive Control (MPC) law incorporating a dynamic feedback gain to minimise a quadratic cost function subject to a single chance constraint. The feedback gain is selected online and we provide two selection methods based on minimising upper bounds on predicted costs. The chance constraint is defined as a discounted sum of violation probabilities on an infinite horizon. By penalising violation probabilities close to the initial time and assigning violation probabilities in the far future with vanishingly small weights, this form of constraints allows for an MPC law with guarantees of recursive feasibility without a boundedness assumption on the disturbance. A computationally convenient MPC optimisation problem is formulated using Chebyshev's inequality and we introduce an online constraint-tightening technique to ensure recursive feasibility. The closed loop system is guaranteed to satisfy the chance constraint and a quadratic stability condition. With dynamic feedback gain selection, the closed loop cost is reduced and conservativeness of Chebyshev's inequality is mitigated. Also, a larger feasible set of initial conditions can be obtained. Numerical simulations are given to show these results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.