Abstract

The aim of this paper is to study the stochastic monotonicity and continuity properties of the extinction time of Bellman-Harris branching processes depending on their reproduction laws. Moreover, we show their applications in an epidemiological context, obtaining an optimal criterion to establish the proportion of susceptible individuals in a given population that must be vaccinated in order to eliminate an infectious disease. First the spread of infection is modelled by a Bellman-Harris branching process. Finally, we provide a simulation-based method to determine the optimal vaccination policies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.