Abstract

It is well known that many processes of heterogeneous catalysis cannot be described correct‐ ly in terms of the Langmuir kinetics or, similarly, in terms of the law of surface action. As has been experimentally shown, not only phenomena related to the substantial spatial and energetic heterogeneity of the adsorbed layer [1] (restricted mobility of adsorbed species, phase transitions in the layer associated with the interaction of adsorbates on the surface, diffusion of adsorbed species into the subsurface layer resulting in the change of adsorption and catalytic properties of the surface, etc.) are very often observed in real catalytic systems, but also the rearrangement of the catalytic surface itself due to adsorption, desorption, reac‐ tions [2, 3], and the temperature factor (for example, the phase transition of surface roughen‐ ing [4, 5]). In several cases, the effect of different surface defects appearing during the reaction or under high-temperature conditions (terraces, steps, kinks, point defects, etc.) on catalytic transformations is the determining factor. However, despite many experimental data, theoretical methods (both deterministic and statistical) used for the description and analysis of this type of nonideal catalytic systems are presently insufficiently developed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call