Abstract
We introduce two stochastic chemostat models consisting of a coupled population-nutrient process reflecting the interaction between the nutrient and the bacteria in the chemostat with finite volume. The nutrient concentration evolves continuously but depends on the population size, while the population size is a birth-and-death process with coefficients depending on time through the nutrient concentration. The nutrient is shared by the bacteria and creates a regulation of the bacterial population size. The latter and the fluctuations due to the random births and deaths of individuals make the population go almost surely to extinction. Therefore, we are interested in the long-time behavior of the bacterial population conditioned to nonextinction. We prove the global existence of the process and its almost-sure extinction. The existence of quasistationary distributions is obtained based on a general fixed-point argument. Moreover, we prove the absolute continuity of the nutrient distribution when conditioned to a fixed number of individuals and the smoothness of the corresponding densities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.