Abstract

As a fabric surface defect, pilling gives clothes an unpleasant appearance and is often characterized with small, complex clusters of fibres attaching to the surface of the garment caused by the fibre migration from yarns to the fabric surface as the fabric rubs against itself, another fabric, or even the skin. In this study, a Markov chain model was built based on the pilling propensity of wool fabrics, evaluated with a scale ranging from 1 (severe pilling) to 5 (non-pilling). These grades were defined as the state space of Markov chain. The numerical values of the transition probability matrix related to the pilling degrees were obtained by maximum likelihood estimation (MLE). Based on the matrix, it was intended to model the changes in the pilling process of woven wool fabrics. Furthermore, given that the fabric will eventually be in state 1, 2 or 3, accepted as unpleasant appearance; the conditional mean first passage times for any transient state to enter any recurrent state for the first time were determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.