Abstract

A stochastic method has been developed to evaluate the average performance of an oscillating water column wave energy device equipped with an (assumedly linear) Wells turbine. The wave climate is represented by a set of sea states, characterized by their power spectra, the free-surface elevation being a Gaussian random variable in each sea state. The variance and the probability distribution of the air pressure inside the chamber are computed for each sea state, it being assumed that the chamber hydrodynamic coefficients and the turbine curves are known. This allows the average performance of the turbine and of the plant to be obtained for each sea state and for the annual wave climate. Numerical examples are worked out for given chamber geometry and turbine shape, showing how the turbine size and rotational speed may be optimized for maximum energy production. Controllable rotational speed and the use of a valve system for turbine flow control are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.