Abstract

Bronchial clearance of deposited particles was simulated using a stochastic model of the tracheobronchial tree. The clearance model introduced in this study considers (1) a continuous decrease of the mucus thickness from the trachea to the terminal bronchioles according to a linear or an exponential function, (2) the possibility of mucus discontinuities, which are mainly found in intermediate and distal airways of the tracheobronchial compartment, (3) mucus production in proximal airways, (4) a slow bronchial clearance phase due to the capture of a defined particle fraction f (s) in the periciliary sol phase, and (5) an eventual delay of the mucociliary transport at carinal ridges of airway bifurcations. Based on the concept of mucus volume conservation in single bifurcations, a reduction of the thickness of the mucus blanket from proximal to distal airways causes a significant increase of the mucus velocities in small ciliated airways compared to other stochastic modeling predictions assuming a constant thickness of the mucus layer throughout the conducting airways. This effect is further enhanced by the consideration of mucus discontinuities. In contrast, the ability of bronchial airways to produce a certain volume of mucus has a decreasing effect on the mucus velocities. In all generated clearance velocity models, mucociliary clearance is completely terminated within 24 h after exposure, consistent with the experimental evidence. Implementation of a slow bronchial clearance phase predicts a long-term retention fraction, which is fully cleared from the lung after several weeks. For 1-microm MMAD particles, 24-h retention varies between 0.42 and 0.52, in line with the suggestions of the ICRP. Mucus delay at carinal ridges only affects short-term clearance by increasing the retained particle fraction at a given time, while long-term retention is not influenced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.