Abstract

SUMMARYSignal propagation through power‐line networks has been studied by a number of researchers. Among a number of propagation models described in literature, deterministic models based on actual physical description of the network can be constructed as both very accurate and very efficient in computational terms. Yet they have an inherent drawback of being suitable for propagation analyses in static conditions and steady state only. Thus, our main research problem was how to extend a deterministic frequency‐domain‐based propagation model for a more practically useful modeling of channels of multi‐port power‐line communication networks. We have concentrated on a particular model that we presented in an earlier literature. Our main findings are as follows: Computationally efficient deterministic models can be utilized for stochastic simulations in multi‐port power‐line network environments by repeating the propagation simulation routine virtually as many times as needed, to model the network parameter variability by appropriate stochastic modeling of termination impedances connected to each of the multiple network ports. In this way, an extended set of physical properties of the channel can be simulated and statistically analyzed, such as the complex transfer function, impulse response, delay spread, and group delay. Copyright © 2013 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.