Abstract

The transcriptome in a cell is finely regulated by a large number of molecular mechanisms able to control the balance between mRNA production and degradation. Recent experimental findings have evidenced that fine and specific regulation of degradation is needed for proper orchestration of a global cell response to environmental conditions. We developed a computational technique based on stochastic modeling, to infer condition-specific individual mRNA half-lives directly from gene expression time-courses. Predictions from our method were validated by experimentally measured mRNA decay rates during the intraerythrocytic developmental cycle of Plasmodium falciparum. We then applied our methodology to publicly available data on the reproductive and metabolic cycle of budding yeast. Strikingly, our analysis revealed, in all cases, the presence of periodic changes in decay rates of sequentially induced genes and co-ordination strategies between transcription and degradation, thus suggesting a general principle for the proper coordination of transcription and degradation machinery in response to internal and/or external stimuli.

Highlights

  • Appropriate and timely changes in gene expression are essential for cell life

  • The transcriptome is finely regulated by a large number of molecular mechanisms able to adjust the balance between mRNA production and degradation

  • Our study showed the presence of the same periodic pattern of mean half-life values in all datasets, suggesting that such behavior may be a general feature, not limited to the Plasmodium falciparum Intraerythrocytic Developmental Cycle (IDC)

Read more

Summary

Introduction

Appropriate and timely changes in gene expression are essential for cell life. The transcriptome is finely regulated by a large number of molecular mechanisms able to adjust the balance between mRNA production and degradation. Every aspect of transcript life is subject to elaborate control but, traditionally, the focus of the research has been on transcriptional regulation [1]. Whereas mRNA abundance results from the dynamic interplay between transcription and degradation, the speed by which cells can adjust their mRNA levels is critically dependent on the rate of mRNA turnover [2]. Small changes in mRNA stability may dramatically drive rapid variations of transcript abundance. Efforts to understand the underlying principles of mRNA decay and transcription co-ordination are very important since the balance between transcription and decay influences most, if not all, the cell responses to endogenous and exogenous signals [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call