Abstract

Large data centers are usually built to support increasing computational and data storage demand of growing global business and industry, which consume an enormous amount of energy, at a huge cost to both business and the environment. However, much of that energy is wasted to maintain excess service capacity during periods of low load. In this paper, we investigate the problem of “right-sizing” data center for energy-efficiency through virtualization which allows consolidation of workloads into smaller number of servers while dynamically powering off the idle ones. In view of the dynamic nature of data centers, we propose a stochastic model based on Queueing theory to capture the main characteristics. Solving this model, we notice that there exists a tradeoff between the energy consumption and performance. We hereby develop a BFGS based algorithm to optimize the tradeoff by searching for the optimal system parameter values for the data center operators to “right-size” the data centers. We implement our Stochastic Right-sizing Model (SRM) and deploy it in the real-world cloud data center. Experiments with two real-world workload traces show that SRM can significantly reduce the energy consumption while maintaining high performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call